If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+112X-203=0
a = 1; b = 112; c = -203;
Δ = b2-4ac
Δ = 1122-4·1·(-203)
Δ = 13356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13356}=\sqrt{36*371}=\sqrt{36}*\sqrt{371}=6\sqrt{371}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-6\sqrt{371}}{2*1}=\frac{-112-6\sqrt{371}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+6\sqrt{371}}{2*1}=\frac{-112+6\sqrt{371}}{2} $
| 4x^2+15-11=0 | | -14x-185=135+2x | | 10+2x-7x=40 | | -15+3x=x+25 | | 3y+40=7y | | 8x^2+112x-203=0 | | 13x-5=12x | | -4w^2-9w+2=0 | | 2(12n-8)=22n-11 | | 8x=24=14x-9 | | -33+9x=15x+69 | | -1/3(3x-9)=19 | | 5(x+8)-7x+15(x+2)=3x+208 | | x-0.4x=44 | | 3(x+8)-8(x+2)+7x-1=2x+7 | | 6(4i+2)=4(4i+3 | | 5f-30=3f | | 3x-5(x-2)=-6+5x-12 | | 3(x+4)=3x+1 | | 5x+22=8x-2 | | 44+x=45-2x | | 4(2x-3)+2x-4=10 | | 5p-19=37-2p | | 5k+7=19 | | 10x-2=4x+5 | | 0.8+x=12 | | -86+9x=15x+124 | | 3(-2x+6)+4x=10x-8-12x | | (2a+5)(a-2)=0 | | 2^2x+3+23(2^x)=3 | | 3+6k=-12 | | 8x-7=5x+23 |